

CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China (USTC)

UV-Initiating Behavior of Highly Branched Polymeric Photoinitiators End-Capped With Benzophenone and Tertiary Amine Moieties

Dr. Mozhen Wang

Application of UV-Curing

Oxygen Inhibition & Migratory Residues

Resolutions

Hyperbranched Polymeric Photoinitiators

Thiol-ene Click Reaction

Scheme 1. General thiol–ene coupling by a) free-radical and b) Michael addition reactions. In both idealized reactions, a single thiol reacts with a single ene to yield the product.

C. N. Bowman and C. E. HoyleAngew, Chem. Int. Ed. 2010, 49, 1540 – 1573

Contents

 The Syntheis and Properties of Hyperbranched Polymeric Photoinitiator Bearing BP Moiety Based on Hyperbranched Poly(ester-amine) — BP-HPEAs

 The Syntheis and Properties of Hyperbranched Polymeric Photoinitiator end-capped with benzophenone and tertiary amine moieties—B/A-HPIs

The Syntheis of BP-HPEAs

The Syntheis of BP-HPEAs

The Characterization of BP-HPEAs

Figure 1. ¹H NMR spectra recorded for (a) BPPO, and (b) BPPM in CDCl₃ Figure 2. ¹³C NMR spectra recorded for (a) BPPO, and (b) BPPM in CDCl₃

The Characterization of BP-HPEAs

Figure 3. FT-IR spectra for (a) BPPO, (b) BPPM and (c) BP-HPEA-3

The Characterization of BP-HPEAs

Figure 4. UV-vis absorption spectra recorded for BP and BP-HPEAs with the concentration of (a) 1.00×10^{-3} M, and (b) 1.00×10^{-5} M in CH₂Cl₂ solution at room temperature

The Photoinitiating Behavior of BP-HPEAs

Figure 5. (a) Photo-DSC exotherms and (b) unsaturation conversion curves for the polymerization of HDDA initiated by BP and BP-HPEAs

The Photoinitiating Behavior of BP-HPEAs

Figure 6. (a) Photo-DSC exotherms and (b) unsaturation conversion curves for the polymerization of HDDA initiated by BP-HPEA-2 in different concentration.

Compatibility of BP-HPEAs with Acrylate Oligomers

Figure 7. DMTA curves recorded for UV cured EB605 films initiated by BP and BP-HPEAs at a frequency of 10Hz and a heating rate of 10 °C/min in the range of -40~180 °C.

The Syntheis of B/A-HPIs

The Characterization of B/A-HPIs

Figure 8. ¹H NMR spectra of (a) BPPO and (b) BPPA in CDCl₃ Figure 9. ¹³C NMR spectra of (a) BPPO and (b) BPPA in CDCl₃

The Characterization of B/A-HPIs

Figure 10. FT-IR spectra of TAP1000, B/A-HPI-1, B/A-HPI-2, and B/A-HPI-3.

The Characterization of B/A-HPIs

Figure 11. UV-vis absorption spectra of BP and B/A-HPIs with the concentrations of (a) 1.00×10^{-3} M and (b) 1.00×10^{-5} M in CH₂Cl₂ solution at room temperature.

The Photoinitiating Behavior of B/A-HPIs

Figure 12. (a) Photopolymerization rate and (b) unsaturation conversion in the UV cured HDDA film versus irradiation time initiated by BP and B/A-HPIs

The Photoinitiating Behavior of B/A-HPIs

Figure 13. (a) Photopolymerization rate and (b) unsaturation conversion in the UV cured HDDA film versus irradiation time initiated by B/A-HPI-2 in different concentration.

The Photoinitiating Behavior of B/A-HPIs

Figure 14. DMTA curves of the UV cured EB605 films initiated by BP and B/ A-HPIs at a frequency of 10 Hz and a heating rate of 10 °C·min⁻¹ in the range of -50~140 °C.

Summary

 Thiol-ene click reactions can be conveniently and successfully used to prepare hyperbranched polymeric photoinitiators end-capped with benzophenone (BP) and tertiary amine moieties.

 Sulfur-containing hyperbranched polymeric photoinitiators, BP-HPEAs and B/A-HPIs, have a high photoinitiating efficiency and a good compatibility with EB605.

Acknowledgement

Faculty	Graduates	Funding
Prof. Wenfang Shi	🔯 Han Xie	National Natural Science Foundation of China (No. 50973100)
	Lihua Hu	
	Yong Zhang	

CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China (USTC)

Thank You !

